Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Cell Rep ; 43(4): 113986, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38598336

RESUMEN

Layer 5 neurons of the neocortex receive their principal inputs from layer 2/3 neurons. We seek to identify the nature and extent of the plasticity of these projections with motor learning. Using optogenetic and viral intersectional tools to selectively stimulate distinct neuronal subsets in rat primary motor cortex, we simultaneously record from pairs of corticospinal neurons associated with distinct features of motor output control: distal forelimb vs. proximal forelimb. Activation of Channelrhodopsin2-expressing layer 2/3 afferents onto layer 5 in untrained animals produces greater monosynaptic excitation of neurons controlling the proximal forelimb. Following skilled grasp training, layer 2/3 inputs onto corticospinal neurons controlling the distal forelimb associated with skilled grasping become significantly stronger. Moreover, peak excitatory response amplitude nearly doubles while latency shortens, and excitatory-to-inhibitory latencies become significantly prolonged. These findings demonstrate distinct, highly segregated, and cell-specific plasticity of layer 2/3 projections during skilled grasp motor learning.


Asunto(s)
Miembro Anterior , Corteza Motora , Plasticidad Neuronal , Animales , Miembro Anterior/fisiología , Plasticidad Neuronal/fisiología , Corteza Motora/fisiología , Corteza Motora/citología , Ratas , Aprendizaje/fisiología , Fuerza de la Mano/fisiología , Neuronas/fisiología , Masculino , Tractos Piramidales/fisiología , Destreza Motora/fisiología , Femenino , Optogenética , Ratas Long-Evans
2.
Front Rehabil Sci ; 4: 1205456, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37378049

RESUMEN

Introduction: The paralysis that occurs after a spinal cord injury, particularly during the early stages of post-lesion recovery (∼6 weeks), appears to be attributable to the inability to activate motor pools well beyond their motor threshold. In the later stages of recovery, however, the inability to perform a motor task effectively can be attributed to abnormal activation patterns among motor pools, resulting in poor coordination. Method: We have tested this hypothesis on four adult male Rhesus monkeys (Macaca mulatta), ages 6-10 years, by recording the EMG activity levels and patterns of multiple proximal and distal muscles controlling the upper limb of the Rhesus when performing three tasks requiring different levels of skill before and up to 24 weeks after a lateral hemisection at C7. During the recovery period the animals were provided routine daily care, including access to a large exercise cage (5' × 7' × 10') and tested every 3-4 weeks for each of the three motor tasks. Results: At approximately 6-8 weeks the animals were able to begin to step on a treadmill, perform a spring-loaded task with the upper limb, and reaching, grasping, and eating a grape placed on a vertical stick. The predominant changes that occurred, beginning at ∼6-8 weeks of the recovery of these tasks was an elevated level of activation of most motor pools well beyond the pre-lesion level. Discussion: As the chronic phase progressed there was a slight reduction in the EMG burst amplitudes of some muscles and less incidence of co-contraction of agonists and antagonists, probably contributing to an improved ability to selectively activate motor pools in a more effective temporal pattern. Relative to pre-lesion, however, the EMG patterns even at the initial stages of recovery of successfully performing the different motor tasks, the level of activity of most muscle remained higher. Perhaps the most important concept that emerges from these data is the large combinations of adaptive strategies in the relative level of recruitment and the timing of the peak levels of activation of different motor pools can progressively provide different stages to regain a motor skill.

3.
Nat Rev Mol Cell Biol ; 24(6): 396-413, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36604586

RESUMEN

One hundred years ago, Ramón y Cajal, considered by many as the founder of modern neuroscience, stated that neurons of the adult central nervous system (CNS) are incapable of regenerating. Yet, recent years have seen a tremendous expansion of knowledge in the molecular control of axon regeneration after CNS injury. We now understand that regeneration in the adult CNS is limited by (1) a failure to form cellular or molecular substrates for axon attachment and elongation through the lesion site; (2) environmental factors, including inhibitors of axon growth associated with myelin and the extracellular matrix; (3) astrocyte responses, which can both limit and support axon growth; and (4) intraneuronal mechanisms controlling the establishment of an active cellular growth programme. We discuss these topics together with newly emerging hypotheses, including the surprising finding from transcriptomic analyses of the corticospinal system in mice that neurons revert to an embryonic state after spinal cord injury, which can be sustained to promote regeneration with neural stem cell transplantation. These gains in knowledge are steadily advancing efforts to develop effective treatment strategies for spinal cord injury in humans.


Asunto(s)
Axones , Traumatismos de la Médula Espinal , Humanos , Ratones , Animales , Axones/patología , Axones/fisiología , Regeneración Nerviosa/fisiología , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/patología , Neuronas/fisiología , Mamíferos
4.
Exp Neurol ; 359: 114259, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36309123

RESUMEN

Neural stem cells (NSCs) implanted into sites of spinal cord injury (SCI) extend very large numbers of new axons over very long distances caudal to the lesion site, and support partial functional recovery. Newly extending graft axons distribute throughout host gray and white matter caudal to the injury. We hypothesized that provision of trophic gradients caudal to the injury would provide neurotrophic guidance to newly extending graft-derived axons to specific intermediate and ventral host gray matter regions, thereby potentially further improving neural relay formation. Immunodeficient rats underwent C5 lateral hemisection lesions, following by implants of human NSC grafts two weeks later. After an additional two weeks, animals received injections of AAV2-BDNF expressing vectors three spinal segments (9 mm) caudal to the lesion in host ventral and intermediate gray matter. After 2 months additional survival, we found a striking, 5.5-fold increase in the density of human axons innervating host ventral gray matter (P < 0.05) and 2.7-fold increase in intermediate gray matter (P < 0.01). Moreover, stem cell-derived axons formed a substantially greater number of putative synaptic connections with host motor neurons (P < 0.01). Thus, trophic guidance is an effective means of enhancing and guiding neural stem cell axon growth after SCI and will be used in future experiments to determine whether neural relay formation and functional outcomes can be improved.


Asunto(s)
Células-Madre Neurales , Traumatismos de la Médula Espinal , Ratas , Humanos , Animales , Factor Neurotrófico Derivado del Encéfalo , Axones/patología , Células-Madre Neurales/trasplante , Neuronas Motoras/patología , Interneuronas/patología , Médula Espinal/patología , Regeneración Nerviosa/fisiología
5.
JCI Insight ; 7(16)2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35993363

RESUMEN

We reported previously that neural progenitor cell (NPC) grafts form neural relays across sites of subacute spinal cord injury (SCI) and support functional recovery. Here, we examine whether NPC grafts after chronic delays also support recovery and whether intensive rehabilitation further enhances recovery. One month after severe bilateral cervical contusion, rats received daily intensive rehabilitation, NPC grafts, or both rehabilitation and grafts. Notably, only the combination of rehabilitation and grafting significantly improved functional recovery. Moreover, improved functional outcomes were associated with a rehabilitation-induced increase in host corticospinal axon regeneration into grafts. These findings identify a critical and synergistic role of rehabilitation and neural stem cell therapy in driving neural plasticity to support functional recovery after chronic and severe SCI.


Asunto(s)
Células-Madre Neurales , Traumatismos de la Médula Espinal , Animales , Axones , Regeneración Nerviosa , Ratas , Traumatismos de la Médula Espinal/terapia , Trasplante de Células Madre
6.
Neuron ; 110(18): 2970-2983.e4, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-35917818

RESUMEN

We used viral intersectional tools to map the entire projectome of corticospinal neurons associated with fine distal forelimb control in Fischer 344 rats and rhesus macaques. In rats, we found an extraordinarily diverse set of collateral projections from corticospinal neurons to 23 different brain and spinal regions. Remarkably, the vast weighting of this "motor" projection was to sensory systems in both the brain and spinal cord, confirmed by optogenetic and transsynaptic viral intersectional tools. In contrast, rhesus macaques exhibited far heavier and narrower weighting of corticospinal outputs toward spinal and brainstem motor systems. Thus, corticospinal systems in macaques primarily constitute a final output system for fine motor control, whereas this projection in rats exerts a multi-modal integrative role that accesses far broader CNS regions. Unique structural-functional correlations can be achieved by mapping and quantifying a single neuronal system's total axonal output and its relative weighting across CNS targets.


Asunto(s)
Corteza Motora , Tractos Piramidales , Animales , Axones/fisiología , Mapeo Encefálico , Macaca mulatta , Corteza Motora/fisiología , Tractos Piramidales/fisiología , Ratas , Médula Espinal/fisiología
7.
Cell Rep Methods ; 2(7): 100255, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35880023

RESUMEN

Neuronal cultures provide a basis for reductionist insights that rely on molecular and pharmacological manipulation. However, the inability to culture mature adult CNS neurons limits our understanding of adult neuronal physiology. Here, we report methods for culturing adult central nervous system neurons in large numbers and across multiple brain regions for extended time periods. Primary adult neuronal cultures develop polarity; they establish segregated dendritic and axonal compartments, maintain resting membrane potentials, exhibit spontaneous and evoked electrical activity, and form neural networks. Cultured adult neurons isolated from different brain regions such as the hippocampus, cortex, brainstem, and cerebellum exhibit distinct cell morphologies, growth patterns, and spontaneous firing characteristics reflective of their regions of origin. Using adult motor cortex cultures, we identify a CNS "conditioning" effect after spinal cord injury. The ability to culture adult neurons offers a valuable tool for studying basic and therapeutic science of the brain.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Neuronas , Humanos , Sistema Nervioso Central , Axones/fisiología , Encéfalo
8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6110-6115, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34892511

RESUMEN

Research using nonhuman primate models for human disease frequently requires behavioral observational techniques to quantify functional outcomes. The ability to assess reaching and grasping patterns is of particular interest in clinical conditions that affect the motor system (e.g., spinal cord injury, SCI). Here we explored the use of DeepLabCut, an open-source deep learning toolset, in combination with a standard behavioral task (Brinkman Board) to quantify nonhuman primate performance in precision grasping. We examined one male rhesus macaque (Macaca mulatta) in the task which involved retrieving rewards from variously-oriented shallow wells. Simultaneous recordings were made using GoPro Hero7 Black cameras (resolution 1920 x 1080 at 120 fps) from two different angles (from the side and top of the hand motion). The task/device design necessitates use of the right hand to complete the task. Two neural networks (corresponding to the top and side view cameras) were trained using 400 manually annotated images, tracking 19 unique landmarks each. Based on previous reports, this produced sufficient tracking (Side: trained pixel error of 2.15, test pixel error of 11.25; Top: trained pixel error of 2.06, test pixel error of 30.31) so that landmarks could be tracked on the remaining frames. Landmarks included in the tracking were the spatial location of the knuckles and the fingernails of each digit, and three different behavioral measures were quantified for assessment of hand movement (finger separation, middle digit extension and preshaping distance). Together, our preliminary results suggest that this markerless approach is a possible method to examine specific kinematic features of dexterous function.Clinical Relevance- The methodology presented below allows for the markerless tracking of kinematic features of dexterous finger movement by non-human primates. This method could allow for direct comparisons between human patients and non-human primate models of clinical conditions (e.g., spinal cord injury). This would provide objective quantitative metrics and crucial information for assessing movement impairments across populations and the potential translation of treatments, interventions and their outcomes.


Asunto(s)
Dedos , Movimiento , Animales , Fenómenos Biomecánicos , Mano , Humanos , Macaca mulatta , Masculino
9.
Invest Ophthalmol Vis Sci ; 62(9): 30, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34283208

RESUMEN

Purpose: To evaluate the integrative potential of neural stem cells (NSCs) with the visual system and characterize effects on the survival and axonal regeneration of axotomized retinal ganglion cells (RGCs). Methods: For in vitro studies, primary, postnatal rat RGCs were directly cocultured with human NSCs or cultured in NSC-conditioned media before their survival and neurite outgrowth were assessed. For in vivo studies, human NSCs were transplanted into the transected rat optic nerve, and immunohistology of the retina and optic nerve was performed to evaluate RGC survival, RGC axon regeneration, and NSC integration with the injured visual system. Results: Increased neurite outgrowth was observed in RGCs directly cocultured with NSCs. NSC-conditioned media demonstrated a dose-dependent effect on RGC survival and neurite outgrowth in culture. NSCs grafted into the lesioned optic nerve modestly improved RGC survival following an optic nerve transection (593 ± 164 RGCs/mm2 vs. 199 ± 58 RGCs/mm2; P < 0.01). Additionally, RGC axonal regeneration following an optic nerve transection was modestly enhanced by NSCs transplanted at the lesion site (61.6 ± 8.5 axons vs. 40.3 ± 9.1 axons, P < 0.05). Transplanted NSCs also differentiated into neurons, received synaptic inputs from regenerating RGC axons, and extended axons along the transected optic nerve to incorporate with the visual system. Conclusions: Human NSCs promote the modest survival and axonal regeneration of axotomized RGCs that is partially mediated by diffusible NSC-derived factors. Additionally, NSCs integrate with the injured optic nerve and have the potential to form neuronal relays to restore retinofugal connections.


Asunto(s)
Axones/patología , Regeneración Nerviosa/fisiología , Células-Madre Neurales/patología , Traumatismos del Nervio Óptico/diagnóstico , Nervio Óptico/patología , Animales , Axotomía , Supervivencia Celular , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Traumatismos del Nervio Óptico/metabolismo , Ratas , Ratas Endogámicas F344 , Ratas Transgénicas , Células Ganglionares de la Retina/patología
11.
Neurosci Insights ; 15: 2633105520974000, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33283187

RESUMEN

Spinal cord injuries leave patients with lifelong paralysis. To date, there are no therapies that promote the critical step required for the recovery of voluntary motor function: corticospinal axon regeneration. Spinal cord-derived neural progenitor cell (NPC) grafts integrate into the injured host spinal cord, enable robust corticospinal axon regeneration, and restore forelimb function following spinal cord injury in rodents. Consequently, engineered stem cell differentiation and transplantation techniques harbor promising potential for the design and implementation of therapies promoting corticospinal axon regeneration. However, in order to optimize the outcome of clinical trials, it is critical to fully understand the cellular and molecular mechanisms underlying this regeneration. Our recent study highlights the unexpected intrinsic potential of corticospinal neurons to regenerate and allows us to investigate new hypotheses exploiting this newly discovered potential.

12.
Sci Rep ; 10(1): 16170, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32999325

RESUMEN

The lower urinary tract (LUT) and micturition reflexes are sexually dimorphic across mammals. Sex as a biological variable is also of critical importance for the development and translation of new medical treatments and therapeutics interventions affecting pelvic organs, including the LUT. However, studies of LUT function with comparisons between the sexes have remained sparse, especially for larger mammals. Detrusor function was investigated by filling cystometry and pressure flow studies in 16 male and 22 female rhesus macaques. By filling cystometry, male subjects exhibited a significantly larger bladder capacity and compliance compared to females. Pressure flow studies showed a significantly higher bladder pressure at voiding onset, peak pressure, and elevation in detrusor-activated bladder pressure from the end of bladder filling to peak pressure in the male subjects. The activation of reflex micturition, with associated detrusor contractions, resulted in voiding in a significantly larger proportion of female compared to male subjects. A higher urethral outlet resistance is suggested in the male subjects. We conclude that sexual dimorphism of detrusor function is prominent in rhesus macaques, shares many features with the human, and merits consideration in translational and pre-clinical research studies of micturition and LUT function in non-human primates.


Asunto(s)
Caracteres Sexuales , Vejiga Urinaria/fisiología , Micción/fisiología , Urodinámica/fisiología , Animales , Femenino , Macaca mulatta , Masculino , Reflejo/fisiología , Uretra/fisiología
13.
Cell Stem Cell ; 27(3): 430-440.e5, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32758426

RESUMEN

Neural stem/progenitor cell (NSPC) grafts can integrate into sites of spinal cord injury (SCI) and generate neuronal relays across lesions that can provide functional benefit. To determine if and how grafts become synaptically organized and connect with host systems, we performed calcium imaging of NSPC grafts in SCI sites in vivo and in adult spinal cord slices. NSPC grafts organize into localized and spontaneously active synaptic networks. Optogenetic stimulation of host corticospinal tract axons regenerating into grafts elicited distinct and segregated neuronal network responses throughout the graft. Moreover, optogenetic stimulation of graft-derived axons extending from the graft into the denervated spinal cord also triggered local host neuronal network responses. In vivo imaging revealed that behavioral stimulation likewise elicited focal synaptic responses within grafts. Thus neural progenitor grafts can form functional synaptic subnetworks whose activity patterns resemble intact spinal cord.


Asunto(s)
Células-Madre Neurales , Traumatismos de la Médula Espinal , Axones , Humanos , Células-Madre Neurales/trasplante , Neuronas , Médula Espinal , Traumatismos de la Médula Espinal/terapia
14.
Nature ; 581(7806): 77-82, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32376949

RESUMEN

Grafts of spinal-cord-derived neural progenitor cells (NPCs) enable the robust regeneration of corticospinal axons and restore forelimb function after spinal cord injury1; however, the molecular mechanisms that underlie this regeneration are unknown. Here we perform translational profiling specifically of corticospinal tract (CST) motor neurons in mice, to identify their 'regenerative transcriptome' after spinal cord injury and NPC grafting. Notably, both injury alone and injury combined with NPC grafts elicit virtually identical early transcriptomic responses in host CST neurons. However, in mice with injury alone this regenerative transcriptome is downregulated after two weeks, whereas in NPC-grafted mice this transcriptome is sustained. The regenerative transcriptome represents a reversion to an embryonic transcriptional state of the CST neuron. The huntingtin gene (Htt) is a central hub in the regeneration transcriptome; deletion of Htt significantly attenuates regeneration, which shows that Htt has a key role in neural plasticity after injury.


Asunto(s)
Proliferación Celular/genética , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Regeneración Nerviosa/genética , Células-Madre Neurales/citología , Neuronas/metabolismo , Neuronas/patología , Transcripción Genética , Animales , Axones/patología , Axones/fisiología , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Proteína Huntingtina/genética , Ratones , Células-Madre Neurales/trasplante , Plasticidad Neuronal , Neuronas/citología , Neuronas/trasplante , Biosíntesis de Proteínas , Tractos Piramidales/citología , Tractos Piramidales/metabolismo , Tractos Piramidales/patología , RNA-Seq , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/patología , Transcriptoma
15.
Hum Gene Ther ; 31(7-8): 415-422, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32126838

RESUMEN

Nerve growth factor (NGF) gene therapy rescues and stimulates cholinergic neurons, which degenerate in Alzheimer's disease (AD). In a recent clinical trial for AD, intraparenchymal adeno-associated virus serotype 2 (AAV2)-NGF delivery was safe but did not improve cognition. Before concluding that NGF gene therapy is ineffective, it must be shown that AAV2-NGF successfully engaged the target cholinergic neurons of the basal forebrain. In this study, patients with clinically diagnosed early- to middle-stage AD received a total dose of 2 × 1011 vector genomes of AAV2-NGF by stereotactic injection of the nucleus basalis of Meynert. After a mean survival of 4.0 years, AAV2-NGF targeting, spread, and expression were assessed by immunolabeling of NGF and the low-affinity NGF receptor p75 at 15 delivery sites in 3 autopsied patients. NGF gene expression persisted for at least 7 years at sites of AAV2-NGF injection. However, the mean distance of AAV2-NGF spread was only 0.96 ± 0.34 mm. NGF did not directly reach cholinergic neurons at any of the 15 injection sites due to limited spread and inaccurate stereotactic targeting. Because AAV2-NGF did not directly engage the target cholinergic neurons, we cannot conclude that growth factor gene therapy is ineffective for AD. Upcoming clinical trials for AD will utilize real-time magnetic resonance imaging guidance and convection-enhanced delivery to improve the targeting and spread of growth factor gene delivery.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/terapia , Dependovirus , Técnicas de Transferencia de Gen , Terapia Genética , Vectores Genéticos , Factor de Crecimiento Nervioso/genética , Anciano , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Autopsia , Prosencéfalo Basal/patología , Neuronas Colinérgicas/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas
16.
Nat Neurosci ; 22(8): 1269-1275, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31235933

RESUMEN

Inhibitory extracellular matrices form around mature neurons as perineuronal nets containing chondroitin sulfate proteoglycans that limit axonal sprouting after CNS injury. The enzyme chondroitinase (Chase) degrades inhibitory chondroitin sulfate proteoglycans and improves axonal sprouting and functional recovery after spinal cord injury in rodents. We evaluated the effects of Chase in rhesus monkeys that had undergone C7 spinal cord hemisection. Four weeks after hemisection, we administered multiple intraparenchymal Chase injections below the lesion, targeting spinal cord circuits that control hand function. Hand function improved significantly in Chase-treated monkeys relative to vehicle-injected controls. Moreover, Chase significantly increased corticospinal axon growth and the number of synapses formed by corticospinal terminals in gray matter caudal to the lesion. No detrimental effects were detected. This approach appears to merit clinical translation in spinal cord injury.


Asunto(s)
Condroitinasas y Condroitín Liasas/uso terapéutico , Traumatismos de la Médula Espinal/tratamiento farmacológico , Animales , Axones/patología , Condroitinasas y Condroitín Liasas/administración & dosificación , Condroitinasas y Condroitín Liasas/efectos adversos , Sustancia Gris/patología , Mano/inervación , Mano/fisiopatología , Inyecciones Intralesiones , Macaca mulatta , Masculino , Microglía/patología , Neuronas Motoras/patología , Desempeño Psicomotor , Tractos Piramidales/patología , Recuperación de la Función , Traumatismos de la Médula Espinal/fisiopatología , Porcinos , Sinapsis/patología , Resultado del Tratamiento
17.
J Neurosci ; 39(24): 4684-4693, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-30948479

RESUMEN

Recurrent synaptic connections between neighboring neurons are a key feature of mammalian cortex, accounting for the vast majority of cortical inputs. Although computational models indicate that reorganization of recurrent connectivity is a primary driver of experience-dependent cortical tuning, the true biological features of recurrent network plasticity are not well identified. Indeed, whether rewiring of connections between cortical neurons occurs during behavioral training, as is widely predicted, remains unknown. Here, we probe M1 recurrent circuits following motor training in adult male rats and find robust synaptic reorganization among functionally related layer 5 neurons, resulting in a 2.5-fold increase in recurrent connection probability. This reorganization is specific to the neuronal subpopulation most relevant for executing the trained motor skill, and behavioral performance was impaired following targeted molecular inhibition of this subpopulation. In contrast, recurrent connectivity is unaffected among neighboring layer 5 neurons largely unrelated to the trained behavior. Training-related corticospinal cells also express increased excitability following training. These findings establish the presence of selective modifications in recurrent cortical networks in adulthood following training.SIGNIFICANCE STATEMENT Recurrent synaptic connections between neighboring neurons are characteristic of cortical architecture, and modifications to these circuits are thought to underlie in part learning in the adult brain. We now show that there are robust changes in recurrent connections in the rat motor cortex upon training on a novel motor task. Motor training results in a 2.5-fold increase in recurrent connectivity, but only within the neuronal subpopulation most relevant for executing the new motor behavior; recurrent connectivity is unaffected among adjoining neurons that do not execute the trained behavior. These findings demonstrate selective reorganization of recurrent synaptic connections in the adult neocortex following novel motor experience, and illuminate fundamental properties of cortical function and plasticity.


Asunto(s)
Aprendizaje/fisiología , Destreza Motora/fisiología , Tractos Piramidales/fisiología , Animales , Animales Recién Nacidos , Fenómenos Electrofisiológicos/fisiología , Fuerza de la Mano , Masculino , Inhibición Neural/fisiología , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Plasticidad Neuronal/fisiología , Terminales Presinápticos/fisiología , Desempeño Psicomotor/fisiología , Ratas , Ratas Endogámicas F344 , Caminata
18.
Cell Rep ; 26(9): 2329-2339.e4, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30811984

RESUMEN

Neural progenitor cell grafts form new relays across sites of spinal cord injury (SCI). Using a panel of neuronal markers, we demonstrate that spinal neural progenitor grafts to sites of rodent SCI adopt diverse spinal motor and sensory interneuronal fates, representing most neuronal subtypes of the intact spinal cord, and spontaneously segregate into domains of distinct cell clusters. Host corticospinal motor axons regenerating into neural progenitor grafts innervate appropriate pre-motor interneurons, based on trans-synaptic tracing with herpes simplex virus. A human spinal neural progenitor cell graft to a non-human primate also received topographically appropriate corticospinal axon regeneration. Thus, grafted spinal neural progenitor cells give rise to a variety of neuronal progeny that are typical of the normal spinal cord; remarkably, regenerating injured adult corticospinal motor axons spontaneously locate appropriate motor domains in the heterogeneous, developing graft environment, without a need for additional exogenous guidance.


Asunto(s)
Interneuronas/fisiología , Neuronas Motoras/fisiología , Regeneración Nerviosa , Células-Madre Neurales/trasplante , Traumatismos de la Médula Espinal/terapia , Columna Vertebral/inervación , Animales , Axones/fisiología , Femenino , Humanos , Macaca mulatta , Masculino , Células-Madre Neurales/fisiología , Neuronas/fisiología , Fenotipo , Ratas , Ratas Endogámicas F344 , Traumatismos de la Médula Espinal/fisiopatología
19.
Nat Med ; 25(2): 263-269, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30643285

RESUMEN

Current methods for bioprinting functional tissue lack appropriate biofabrication techniques to build complex 3D microarchitectures essential for guiding cell growth and promoting tissue maturation1. 3D printing of central nervous system (CNS) structures has not been accomplished, possibly owing to the complexity of CNS architecture. Here, we report the use of a microscale continuous projection printing method (µCPP) to create a complex CNS structure for regenerative medicine applications in the spinal cord. µCPP can print 3D biomimetic hydrogel scaffolds tailored to the dimensions of the rodent spinal cord in 1.6 s and is scalable to human spinal cord sizes and lesion geometries. We tested the ability of µCPP 3D-printed scaffolds loaded with neural progenitor cells (NPCs) to support axon regeneration and form new 'neural relays' across sites of complete spinal cord injury in vivo in rodents1,2. We find that injured host axons regenerate into 3D biomimetic scaffolds and synapse onto NPCs implanted into the device and that implanted NPCs in turn extend axons out of the scaffold and into the host spinal cord below the injury to restore synaptic transmission and significantly improve functional outcomes. Thus, 3D biomimetic scaffolds offer a means of enhancing CNS regeneration through precision medicine.


Asunto(s)
Biomimética , Regeneración Nerviosa , Impresión Tridimensional , Traumatismos de la Médula Espinal/terapia , Andamios del Tejido/química , Animales , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Células-Madre Neurales/metabolismo , Células-Madre Neurales/trasplante , Células-Madre Neurales/ultraestructura , Ratas
20.
Exp Neurol ; 314: 46-57, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30653967

RESUMEN

Neural stem cells (NSCs) can differentiate into both neurons and glia after transplantation into spinal cord injury (SCI) sites. The neuronal component of stem cell grafts has the potential to form functional synaptic relays across the lesion site. The glial component may reform a blood-spinal cord barrier, support neuronal function, and contribute to remyelination. We performed a long-term, 1.5-year time course study focused on astrocyte migration, differentiation, integration, and safety following human NSC transplantation into C5 hemisection sites in immunodeficient rats. NSCs that adopted a neuronal fate did not migrate from the lesion site. In contrast, transplanted cells that adopted astrocyte fates exhibited long distance migration from the lesion site through host white matter in rostrocaudal directions. These cells migrated slowly at a mean rate of 2-3 mm/month, divided as they migrated, and gradually differentiated into astrocytes. After 1.5 years, human astrocytes migrated nine spinal cord segments, caudally to the mid-thoracic level, and rostrally into the brainstem. The migrated human astrocytes joined the endogenous population of astrocytes in the host spinal cord, extended perivascular endfeet towards host pericytes and endothelium, formed interspecies and intraspecies perivascular astrocytic networks connected by gap junctions, and expressed glutamate transporter proteins in perisynaptic processes, suggesting structural and functional integration. No adverse consequences of this extended glial migration were detected. Adjacent to the lesion site, chronic host astrocytic upregulation was significantly attenuated by NSC grafts. Thus, human astrocytes can migrate long distances from sites of SCI and safely integrate into the host central nervous system. SIGNIFICANCE STATEMENT: Neural stem cell (NSC) grafts are a candidate therapy for spinal cord injury (SCI). Here we report an 18-month study of astrocyte survival and migration from sites of SCI in immunodeficient rats. NSC grafts significantly attenuate host astrocyte reactivity at the lesion/host interface. Intra-graft astrocytes integrate into the host blood-spinal cord barrier (BSCB) and widely express glutamate transporter proteins characteristic of neurotransmitter regulation. Notably, astrocytic components of NSC grafts exhibit gradual yet extensive migration after implantation into the mid-cervical injury site; neurons do not migrate at all. This extensive astrocyte migration is not detectably associated with adverse outcomes anatomically or behaviorally.


Asunto(s)
Astrocitos , Movimiento Celular/fisiología , Células-Madre Neurales , Traumatismos de la Médula Espinal/terapia , Animales , Tronco Encefálico/citología , Supervivencia Celular , Femenino , Uniones Comunicantes , Xenoinjertos , Humanos , Huésped Inmunocomprometido , Red Nerviosa/citología , Células-Madre Neurales/metabolismo , Neurogénesis , Ratas , Ratas Desnudas , Médula Espinal/citología , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/psicología , Trasplante de Células Madre , Proteínas de Transporte Vesicular de Glutamato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...